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The effect of sho11 term NaC I (O 100 200 1 3 . . . , , an c 00 mM ) 
mduced ox1dat1ve stress and anti ox idailt I b 1. . . ' ' me a o ism 111 rallan 
(Cala11111s tem11s Roxb.) leaves were invest·· t d Al . . . 1ga e . terat,ons 
111 the activated oxygen metabolism oftl,e lea d d . · . ves were etecle 
as ev idenced by th e mcrease in H O content a11d 1,· .d 

. ·'d . d 2 2 C p, pe1ox1 at1 on ue to the accumulatio11 of 1·1,,·ob b't · 'd . ar I unc ac, 
reacti ve s~bstan ce_s (:"B~RS) with th e increas in g NaC l 
concentrations. Anttox1dat1ve enzymes superoxide dismutase 
(SOD) and peroxidase (POX) acti vities decreased, whereas, 
~atalase (CAT), and glutathione reductase (GR) activities 
tncreased . The non-enzymic antioxidants ascorbate and 
glutathione increased significantly in response to NaCl 
treatment. Na+ ion increased, whereas, K+ ion increased in 
lower concentrations followed by a decline in higher 
concentrations with no significant change in growth with the 
increase in NaCl treatments. 
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increased salinity lead to significant decrease in 
crop productivity. Salinity limits plant growth and 
productivity affecting water deficit, ionic imbalance, 
osmotic stress and inducing secondary oxidative 
stress by the production of reactive oxygen species 
(ROS) (Munns, 2002; Bor et al. , 2003; Panda and 
Khan, 2003). Any imbalance in the cellular redox 
homeostasis can be called oxidative stress which 
results in the production of reactive oxygen species 
(ROS) such as superoxide radical (02) , hydrogen 
peroxide (H

2
0

2
) , hydroxyl radical ('OH), a_!kox~I 

radical (RO') and singlet oxygen (0 2) formation via 
enhanced leakage of electron to oxygen. Reactive 
oxygen species attack and oxidize proteins, lipids 
and nucleic acids (Alscher el al. , 1997; Noctor and 
Foyer, 1998; Grant and Loake, 2000; Panela and 
Khan, 2003) . Plants have developed a complex 
antioxidative defe nce systems to all evi ate the 
damage caused by ROS and the degree or damage 

depends on the balance between the fo rmati on of 
ROS and its removal by the antiox i.dative scavenging 
systems that defend against them . The antioxidat ive 
systems include carotenoids, ascorbate, gJutatru one, 
a- toco phero ls and enzymes suc h as superoxide 
di smutase (EC. 1. 15. l . l .) , catalase (EC. I . 11 . 1. 
6. ), glutathi one peroxidase (EC. 1. 11 . 1.9. ) 
peroxidases and enzymes involved in ascorbate 
glutathione cycle (ASC-GS H Cycle), ascorbate 
peroxides (EC. 1. 11 . 1.1. ), dehydroascorbate 
reductase (EC. 1. 8. 5.1.) monodehydrosacorbate 
reductase (EC. 1. 6. 5.4.) and glutathione reductase 
(EC. 1. 6. 4.2.). (Alscher et al. , 1997; Noctor and 
Foyer, 1998; Jimenez et al. , 1997; Shalata and TaL 
1998; Gomez et al. , 1999; Hernandez et al. , 2000; 
Jose et al., 2002; Khan et al., 2002; Bor et al. , 2003 ; 
Panda and Khan, 2003 ; Meloni et al. , 2003 ; Tsaia et 
al. , 2004; Demiral and Turkan_ 2005, Mandhania et 
al. , 2006). 

Calamus tenuis (rattan) is a slow orowino 
0 0 

tropical climbing palm that has multi ple economic 
uses. The effect of NaCl-salinity induced o~ darive 
stress and antioxidant metabolism in rattan are 
relatively less known. The present investigation was 
carried out to evaiuate the oxidati ve st ress . 
antioxidant metabolism in response to short NaC l 
treatments in rattan leaves. 

MATERIALS AND METHODS 

Plant material am/ NaCl treatment : Rattan 
(Calamus ten11is Ro xb.) s~eds were sown and 
gcr.minated i_n n pl as ti c tray containing sand 
rno1stcncd with tap water for four weeks . The 
gcnninatcd seeds one in each was transferred to 
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Figure I . Changes in (A) d ry we ight, (B) sodium (Na+) and potassium (K+) ion content, (C) peroxide levels a-nd (D) thiobarbitur ic 
acid reacti ve substance {TBARS) content in Calamus tenuis leaves under short-term NaCl treatment . Data presented means ±: 
SE. 

plastic pots containing sand and grown with nutrient 
Hoagland's solution (Hoagland and Amon, 1950) 
in green house for 9 (nine) months. The 
environmental conditions in the green house 
contai.ni.ng the germinated plants were 28 °c / 24 
0c (day/ night) temperature, 80 % relative humidity 
and 7000 lux oflight intensity with 18h photoperiod. 
The 9 months old plants consisted of 5 compound 
leaves. The plants were treated with different 
concentrations of NaCl (0, 100, 200 and 300 m:M L-
1) i.n soil for 5 (five) days. Seedling grown in soil 
with Hoagland 's nutrient solution only was used as 
control. On 6th day, the leaves were used for various 
biochemical estimations. 

Study of growth, Na+ and JC" ions estimation : 
Leaves were separated from the seedlings and their 
constant fresh weight (mg) was taken. Dry weight 
(mg) of the leaves was determined after placing 
samples in hot air oven at 55-6o0c for 72h using 
balance (Sartorius, Germany). The dri ed leaves were 
acid digested in a ratio of HN0

3
-HCI (3: I v/v) 

mixture and Na+ and K+ concentrations were 
determined as per the method described by Humpries 
(1956) using Flame Photometer (Systronics, India). 

Estimation of hydrogen peroxide and lipid 
peroxidation levels : Leaves (0 .5 g) we re 
homogenized in 5 % trichloroacetic acid (TCA) and 
the homogenate was used for the determination of 
hydrogen peroxide (H

2
0

2
) levels by the method of 

Sagisaka ( 1976). The level of lipid peroxidation i.n 
the root tissues was determined as thiobarbituric 
reactive substances (TBA RS) as described by Heath 
and Packer ( 1 968). 

Determination of ascorbate and total 
glutatl,ione content : For the extrac tion a nd 
estimation of ascorbate, the method of Oser ( l 979) 
was used. Glutathione was extracted and estimated 
as per the method of Gritlith ( 1980). 

t.x tractio11 au,/ mi.my ofantioxidalive e111J1mes 
Leaves were exc ised from lhl! sc~d lings. Fresh 

' 
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weight _(0.2 g) was homogenized at 4 Oc in 5 ml of 
e~tractton buffer (0.1 M phosphate buffer, pH 6.8) 
with 1~1ortar and pestle. The homogenate was then 
centrifuged at 15 ,000 g for 20 min and the 
homogenate was used as the crude extract for the 
super?xide di smutase (SOD) , catalase (CAT), 
perox1d~se (POX) and glututhione reductase (GR) 
assay usmg the methods of Giannopolitis and Reis 
(1977), Chance and Maehly (1955) and Smith et al 
(1988) respectively. The experiments were repeated 
twice with tlu-ee replicates (n = 6) and data presented 
are mean ± standard errors (SE). 

RESULTS AND DISCUSSION 

There is relatively little change in the growth of 
the plants as measured in terms of dry weight in all 
concentrations of NaCl (figure 1 a). The Na+ ion 
content increased uniformly in all concentrations of 
NaCl with respect to the control values whereas 

' ' the K+ ion content increased followed by a decline 
in higher NaCl concentrations (figure 1 b). The 
results showed that NaCl-salinity increased the Na+ 
ion content and decreased the K+ ion uptake. The 
increase in the Na+ ion content and decrease in K+ 
ion uptake disturbs ionic balance as observed in most 
species exposed to salt stress (Al Zahrani and Hajar, 
1998; Heuer, 2003). High Na+ accumulation in salt
sensitive foxtail millet cultivar, in tomato and rice 
have been reported to result in an enhanced 
membrane damage, electrolyte leakage and 
oxidative damage, whereas significantly lower Na+ 
accumulation in salt tolerant cultivars showed 
maintenance of cellular intactness (Qadar, 1991; 
Sreenivasulu et al., 2000; Racagni et al. , 2003/4; 
Mandhania et al., 2006). 

The NaCl (0, 100, 200, and 300 mM) treatments 
showed significant increase in peroxide content. As 
an indicator oflipid peroxidation, the thiobarbituric 
acid reacting substances {TBARS) content was 
measured. Increasing concentrations ofNaCl caused 
an enhancement of TBARS (figure 1 c, d). Salt 
treatments increase lipid peroxidation or induce 
oxidative stress in plant tissues. Lipid peroxidation 
measured as amount of TBARS is produced when 
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r olyunsatu rated fatty aci.ds in the membrane undergo 
peroxidati on by the accumulation of fr~e ~xy~en 
radicals. Salt stress produced ion leakage 111d1catrng 
injury to membran e integrity, which could ~e 
affected by ROS formed during leaf photosynthesis 
or respiration, enhancing lipid peroxidation of the 
membrane (Gomez et al., 1999; Savoure et al., 1999; 
Hernandez et al., 2000). There are reports that salt 
treatment increases the content of H20 2 and 
peroxidation of the lipid membrane, thus di srupting 
its permeability or induce oxidative stress in plant 
ti ssues (Gomez et al., 1999; Khan and Panda, 2002; 
Khan et al. , 2003; Panda and Khan, 2003 ; Tsai el 
al., 2004; Demiral and Turkan, 2005 ; Mandhania et 
al., 2006). As lipid peroxidation is the symptom 
mostly ascribed to oxidative damage, it is often used 
as an indicator of increased damage (Gomez et al. , 
1999; Hernandez et al. , 2000). The results reported 
here show that the degree of accumulation of 
TBARS due to salt stress (Gomez et al. , 1999; 
Hernandez et al., 200 I ; Melonj et al. , 2003 ; Bor et 
al., 2003). 

There is a significant decrease in the SOD 
activity in all the treatments (figure 2 a). SOD 
catalyzes the conversion of the superoxide anion 
(02') to hydrogen peroxide CT-½02), which is very 
damaging to the chloroplasts, nucleic acids and 
proteins. The results showed a decreased SOD 
activity (figure 2 a), may result from an increased 
inactivation by H

2
0

2 
there by lowering the 

dismutation ofH20 2 and miabling the plant to resiS1 
the potential oxidative damage caused by NaCl 
salinity exposure (Shalata and Tal, 1998; Hernandez 
et al. , 2000; Khan and Panda, 2002; Panda and Khan.. 
2003). Lee et al. (2001) observed that NaC l 
treatment induced a significant increase of SOD 
activity ofrice leaves, however, activity in rice roots 
were affected by NaCl. A significant increase of SOD 
activity occurred in pea leaves after short-term NaCl 
stress (Hernandez and Almansa, 2002). Tsai er al. 
(2004) observed that NaCl had no effect on the 
activity of SOD and isozymes of SOD in rice roots. 
An increased CAT activity and decreased POX 
ac tivity was observed with the increase in the 
concentrations of NaCl treated leaves (figure 2 b, 
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Figure 2. Changes in (A) superoxide di smutase (SOD), (8 ) catalase (CAT), (C) peroxidase (POX), (D) glutathione reductase 
(GR) activities, (E) ascorbate and (F) g lutathione content in Calamus tenuis leaves under short- te rm NaCl treatment. Data 
presented means ± SE 

c). Peroxide produced du::-ing oxidative stress can 
easily permeate membranes and are removed by 
catalase (CAT) or by peroxidases (POX) or catalase 
(CAT) (Meloni et al. , 2003). The results indicated a 
decreased POX activity. Demiral and Turkan (2005) 
showed that the POX decreased in ri ce cul t ivar 
Pokkali whereas increased in rice cultivar IR 28. 
There are reports of increased POX activity in rice 
(Oidaira et al. , 2000; Meloni el al. , 2003). The results 
showed increased CAT acti vity. The induc tion of 
catalase acti v ity und e r wa te r s tress is we ll 
documented and a posi tive re lationship has been 
found between its up-regul ati on and stress tolerance 
(Hernandez et al. , 2000; Sha la ta el al. , 200 I; 

Ushimaru et al. , 2001 ; Demiral and Turkan. ~005). 
The results obtained in th is study are in accordance 
with those of Sairam et al. (2002) and Gueta-Dahan 
et al. ( 1997) w ho reported enhancement in CAT 
act iv ity in bo th sa lt sens iti ve a nd salt - toler:1nt 
culti va rs of w heat. Va idyana than et al . (2003) 
reported enhancement in CAT ac ti vi ty in salt-tole rant 
rice culti va r. Savoure et al. ( l 999) fo und that N:1C I 
stimulated cata lase activity thro ugh ac ti vation of the 
Cat2 and Cat] genes. Dcmiral and Tukan (2005) 
reported tha t the CAT ac ti vity incrl·ased under NaC l 
stress in ri ce culti var Pok~ali. wher~as the CAT 
ac ti vity dec reus,x l in rice cultivar IR 28. Fadzilla et 
ct/. ( 1997) reported that NaC l had no e ffec t on CAT 
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activity on rice shoots. Tsai et al. (2004) reported 
~hat NaCl ~oes ~ t~ot i n17 ucnce the activity and 
1sozymes ot CAl 111 rice roots. On the other hand 
decrease in CAT by N aCl has been ~hown in ric~ 
leaves (Lee et al., 2001) and in Ma/11s domestica 
explants (Molassiotis et al. , 2006). 

Glutathione reductase (GR) a key enzyme of the 
ascorbate-glutathione cycle increased in lower NaC l 
treatments, however, declined in higher 
concentrations of NaCl (300 mM) (figure 2 d). GR 
also plays a key role in oxidative stress by converting 
the oxidised glutathione (GSSG) to reduced 
glutathione (GSH) and maintaining a high GSH/ 
GSSG ratio (Fadzilla et al., 1997; lrishimovitch and 
Shapira, 2000). In our study, increased GR activity 
was observed. Increased GR activity in leaves of 
sugar beet plant have been reported, may be closely 
related with salt tolerance capacity of these plants 
(Bor et al., 2003). Increased GR activity facilitates 
improved stress tolerance and has the ability to alter 
the redox poise of improved components of electron 
transport chain (Tyystjarvi et al. , 1999). Hernandez 
and Almansa (2002) demonstrated that GR activity 
increased in pea leaves during short-term NaCl 
stress. Tsai et al. (2004) showed that increased GR 
activity and are enhanced by NaCl in the ~oots of 
rice seedlings. Since NaCl-induced enzyme activity 
indicates a specific role in coping with the stress, 
constitutive and/or induced activities of SOD, CAT, 
AP, and GR further suggest improved tolerance to 
salt stress (Gueta-Dahan et al. 1997). Enhanced GR 
activity has been reported in plants by NaCl 
treatment (Savoure et al., 1999; Kawasaki el al., 
2001). 

The non-enzymic antioxidants ascorbate and 
glutathione increased significantly with the 
increasing NaCl concentn\tions (figure 2 e, f). The 
non-enzymic antioxidant ascorbate and glutathione 
react directly with the ROS in photosynthetic tissues, 
recycles a-tocopherol and protect enzymes with 
prosthetic metal ions and is utilized as a substrate 
for ascorbate peroxidase (APX), catalyzes 1-:1 20 2 
detoxification (Noctor and Foyer, 1998). The results 
observed showed increased ascorbate and 
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glutathione content allowing better antioxidant 
protection as reported for other plants (Meneguzzo 
et al. , 1999; Khan and Panda, 2002; Khan et al., 
2002; Tsai et al., 2004) . However, there are reports 
that ascorbate and glutathione levels decreased in 
plants in response to NaC l stress (Hernandez el al., 
2000; Sha lata et al., 200 I) . ft appea rs that the 
increase in ascorbate level s in rice roots treated with 
NaC l der,ends on the rates of its synthesis as we ll as 
on the rates of its regeneration (Tsai et al. , 2004). 
C hange s in processes that regulate GSH 
concentration and I or redox status are considered 
to be one of the important adaptive mechanisms of 
plant exposed to stress conditions (Fadzilla et al. , 
1997). It has been suggested that salinity induce 
glutatpione synthesis in Brassica napus (Ruiz and 
Blumwald, 2002). 

The better NaCl tolerance in rattan leaves observed 
during present investigation may be due to restriction 
of Na+ accumulation and ability to maintain high 
K+/Na+ ratio in tissue. Though TBARS and H

2
0

2 
content accumulated indicating NaCl-induced 
oxidative stress, activities of the antioxida1ive 
enzymes like SOD and POX decreased, whereas, 
CAT and GR activities increased and the non
enzymic antioxidants like ascorbate and glutathione 
increased, may explain the higher NaCl-tolerance 
of rattan against salt stress. 
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