A PROTOCOL FOR IN VITRO SOMATIC EMBRYOGENESIS FROM LEAF EXPLANTS OF ANDROGRAPHIS PANICULATA WALL. EX NEES

SULOCHNA BOUDDHA, SONU BHARTI, EKTA RAI AND SHAMIM AKHTAR ANSARI

Genetics & Plant Propagation Division
Tropical Forest Research Institute, Jabalpur-482021
E-mail: sulochna.bouddha@gmail.com, sonugpb@rediffmail.com
Date of online publication: 31st March 2020
DOI:10.5958/2455-7218.2020.00003.0

Andrographis paniculata Wall. Ex Nees is a small branched annual medicinal herb. In vitro study was conducted for somatic embryogenesis through in vitro leaf explant on MS medium containing different doses of 2,4-D and BA. 4.44 µM BA with the combination of 0.45 µM 2,4-D produced maximum somatic embryos with in 60, i.e. 30+30 (intermittent one mid transfer on the same fresh medium) days after inoculation of trimmed leaf explants. Different strength of MS medium (1.0×, 0.75×, 0.50× and 0.25×) tested on somatic embryos for the maturation of embryos. 30 days after the inoculation of somatic embryos, 0.50 x gave 96% mature embryos. After that these mature embryos developed into plants on MS medium containing 5 µM GA3 and 10 µM BA in 30 days after the inoculation of mature embryos. The somatic embryogenesis raised plantlets acclimatized and successfully transferred to the field and successfully survived.

Keywords: Embryogenic callus; Embryo germination; Embryo maturation; Plantlet recovery

The in vitro explant, i.e. a vegetative propagule or mother tissue can regenerate into an adventitious plant through two alternative mechanisms, namely organogenesis and somatic embryogenesis. In the first case, adventitious shoots and roots are sequentially regenerated and characterized by the organic (vascular) connections between de novo adventitious shoots and the mother tissue (Terzi and Lo Schiavo, 1990). On the other hand, somatic embryogenesis involves orderly processes of multiplication, differentiation and maturation of haploid or diploid somatic cells into discrete bipolar structures, i.e. somatic embryos without organic connections with mother tissue, sharing structural and functional similarity with zygotic embryos (Williams and Maheswaran 1986, Emons 199, Raemakers et al. 1995). He et al. (1990) have reported the occurrence of both organogenesis and somatic embryogenesis in the same explant, which originates from particular tissue layers or cells within explants (Osterneck et al. 1999). However, somatic embryogenesis is nowadays best known as a pathway to induce in vitro regeneration of disease (virus) free plantlets of genetic uniformity from a proven superior mother plant and provide an opportunity for genetic transformation and production of genetically modified plants.

The present communication describes a standardized protocol for in vitro somatic embryogenesis and recovery of plantlets in Andrographis paniculata (Burm. f.) Nees (Acanthaceae). The species has been used in traditional systems of medicine to treat much number of ailments, including the common cold, fever, diarrhea, liver diseases, and inflammation (Anonymous 2002). It is a herb that originated from India and widely distributed in southern China. Recently, its active diterpene lactone andrographolides have been clinically demonstrated to exhibit anti HIV activity (Basak et al. 1999, Calabrese et al. 2000) and cardio-protecting activity (Woo et al. 2008) as well as inhibit various oncogenic growths, e.g. prostate cancer (Chun et al. 2010) and lymphoma tumors (Yang et al. 2010). However, the poor germination of A. paniculata seeds (Rawat and Vshishtha 2011; Kumar et al. 2011, Bhatacharya et al. 2012) poses a problem for its large scale cultivation
and encourages for alternative procedures like somatic embryogenesis for steadily supply of propagules and planting material.

MATERIALS AND METHODS

Three sequential experiments were conducted for *in vitro* regeneration of callus and somatic embryogenesis. The dark green leaf explants obtained from *in vitro* raised shoots of *Andrographis paniculata* on MS medium supplemented with 5 µM BA were used for callus induction in Experiment 1. The leaf explants were trimmed at base and tips and cut at midribs before inoculation abaxially on the culture medium (Fig. 1a). The first and third experiments were conducted in factorial randomized design; whereas the second experiment was carried out in a simple randomized design. Four doses each of 2,4-D (0, 0.45, 2.26 and 4.52 µM) and BA (0, 4.44, 6.66 and 8.88 µM) and their all possible interactions on callus induction from leaf explants in Experiment 1, MS medium strengths (1.0×, 0.75×, 0.50× and 0.25×) on somatic embryo maturation in Experiment 2, and four doses each of GA_3 (0, 2.5, 5.0 and 10.0 µM) and BA (0, 5, 10 and 20 µM) and their all possible interactions on germination and elongation of matured somatic embryos in Experiment 3 were tested. Samplings were done at 15, 20 and 30 days after inoculation in Experiment 1 and 30 days after inoculation in Experiment 2 and 3. The data were also recorded for rough embryogenic green callus and smooth non-embryogenic yellow callus at 30 days after inoculation in experiments 1 and 2. Further, the obtained embryogenic callus was uniformly kept for 30 days on MS medium supplemented with standardized combined doses of BA (4.44 µM) and 2,4-D (2.26 µM) of experiment 1 before being used as explants for experiment 2. There were three replicates each of five explants comprising leaf segments for experiment 1 and matured somatic embryos for Experiment 3 and five replicates each of five explants i.e. embryogenic callus for experiment 2.

All cultures were maintained at 25 ± 2°C under a light intensity of 45 µEm⁻² s⁻¹ with a 16 h photoperiod. The full-strength MS medium (unless otherwise mentioned) supplemented with 30 g/L sucrose and made semi-solid with 7.5 g/L agar was uniformly used in all experiments. The pH of the medium was adjusted to 5.7 to 5.8 before autoclaving for 20 min at 121°C and 1.46 ×10^5 Pa. Data were subjected to ANOVA analysis following F the test at P < 0.05. If the F test found significant, Tukey's LSD values at P = 0.05 were computed for comparing parameter values at various time intervals.

RESULTS

Callus induction: Leaf explants inoculated in Experiment 1 exhibited swelling at 15 days (Fig. 1a), callus formation in 20 days (Fig. 1c) and differentiating callus in 30 days (Fig. 1d) after inoculation. 2,4-D/BA doses alone and their in combinations significantly influenced various parameters recorded at 15, 20 and 30 days after inoculation.
days after inoculation (Tables 1-3). Leaf swelling at 15 days and callus formation at 20 days were significantly maximum in 0.45-4.52 µM 2,4-D, 4.44-6.66 µM BA and their interactions (Tab. 1-2). Total callus 30 days was significantly highest at 4.52 µM 2,4-D, 4.44-8.88 µM BA and all interactions comprising 0.45-4.52 µM 2,4-D and 4.44-8.88 µM BA. However, the rough embryogenic callus (Fig. 2a) was significantly highest at 0.45 µM 2,4-D, 4.44 µM BA and interactions comprising 0.45-4.52 µM 2,4-D with 4.44 µM BA and 0.45 µM 2,4-D with 6.66-8.88 µM BA and the smooth non-embryogenic callus (Fig. 2b) in 4.52 µM 2,4-D, 6.66-8.88 µM BA and interactions comprising 2.26-4.52 µM 2,4-D and 6.66-8.88 µM BA (Tab. 3). Leaf explants maintained on hormone-free culture medium did not exhibit swelling or callus induction at all stages of sampling (Tab. 1-3). MS medium supplemented with 0.45 µM 2,4-D and 4.44 µM BA emerged to be the most economical and judicious for bulk production of rough embryogenic callus (Fig. 3), which was subsequently used for Experiment 2 dealing with the maturation of somatic embryos.

Table 1. Effect of BA doses (B), 2,4-D doses (D) and their interactions on leaf explant swelling (%) at 15 days after inoculation. Values expressed in the parenthesis are arc sine transformed. Data are mean of three replicates.

<table>
<thead>
<tr>
<th>2,4-D (µM)</th>
<th>BA (µM)</th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>4.44</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>(5.00)</td>
</tr>
<tr>
<td>0.45</td>
<td>0</td>
<td>100.00</td>
</tr>
<tr>
<td>2.26</td>
<td>46.67</td>
<td>100.00</td>
</tr>
<tr>
<td>4.52</td>
<td>46.67</td>
<td>100.00</td>
</tr>
<tr>
<td>Mean</td>
<td>23.33</td>
<td>75.00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Variable</th>
<th>LSD(0.05)</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>6.8</td>
</tr>
<tr>
<td>D</td>
<td>6.8</td>
</tr>
<tr>
<td>B*D</td>
<td>13.6</td>
</tr>
</tbody>
</table>

Figure 2. The *in vitro* callus induction from leaf segment of *Andrographis paniculata* at 30 days after inoculation. (a) Embryogenic callus on MS medium supplemented with 0.45 µM 2,4-D and 4.44 µM BA and (b) Non-embryogenic callus on MS medium supplemented with 2.26-4.52 µM 2,4-D and 6.66-8.88 µM BA.

Figure 3. The *in vitro* embryogenic callus from leaf segment of *Andrographis paniculata* obtained on MS medium supplemented with 0.45 µM 2,4-D and 4.44 µM BA at 30 days after inoculation used for maturation of somatic embryos in Experiment 3.
Table 2. Effect of BA doses (B), 2,4-D doses (D) and their interactions on leaf callus induction (%) at 20 days after inoculation. Values expressed in the parenthesis are arc sine transformed. Data are mean of three replicates.

<table>
<thead>
<tr>
<th>2,4-D (µM)</th>
<th>BA (µM)</th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0.45</td>
<td>0.44</td>
<td>6.66</td>
</tr>
<tr>
<td>2.26</td>
<td>4.52</td>
<td>8.88</td>
</tr>
</tbody>
</table>

Table 3. Effect of BA doses (B), 2,4-D doses (D) and their interactions on induction of different type leaf callus at 30 days after inoculation. Values expressed in the parenthesis are arc sine transformed. Data are mean of three replicates

<table>
<thead>
<tr>
<th>2,4-D (µM)</th>
<th>Total</th>
<th>BA (µM)</th>
<th>Embryogenic rough</th>
<th>Non-embryogenic smooth</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>4.44</td>
<td>6.66</td>
<td>8.88</td>
<td>Mean</td>
</tr>
<tr>
<td>0.45</td>
<td>10.00</td>
<td>100.00</td>
<td>100.00</td>
<td>100.00</td>
</tr>
<tr>
<td>2.26</td>
<td>50.00</td>
<td>65.00</td>
<td>65.00</td>
<td>65.00</td>
</tr>
<tr>
<td>4.52</td>
<td>20.00</td>
<td>100.00</td>
<td>93.33</td>
<td>93.33</td>
</tr>
</tbody>
</table>

Somatic embryo maturation: MS medium strengths significantly influenced somatic embryo maturation at 30 days after inoculation of embryogenic callus (Fig. 4-5). Of the four strengths, 0.50x MS medium was found to be significantly optimum for the parameter, producing 96% mature somatic embryos (Fig. 4). The significantly lowest somatic embryo maturation was recorded on 0.25x MS. The embryo maturation was 2.4 times higher in 0.50x MS medium than 0.25x MS medium. Further, 0.25x MS medium also produced the highest amount of non-embryogenic callus.

Figure 4. The in vitro maturation of somatic embryos of Andrographis paniculata on various strengths of hormone free MS medium at 30 days after inoculation. Two series of alphabets are used for somatic embryo maturation (a, b, c, d) and non-embryogenic callus (m, n, o, p). The histograms bearing different alphabets represent statistically different values in their series. The numerical values on histograms are arc sine transformations of the corresponding data.
Germination of the somatic embryo and plantlet recovery: BA and GA₃ alone significantly promoted germination of somatic embryos in 30 days after inoculation (Tab. 4, Fig. 6 a, b). MS medium supplemented with 10 µM BA or 5 µM GA₃ produced significantly the highest number of shoots and roots per somatic embryo. 10 µM BA enhanced shoot number by 3.16 and root number by 3.79 times in comparison to that of 5 µM BA. Similarly, 5 µM GA₃ enhanced shoot number by 4 times and root number by 4.30 times in comparison to that 2.5 µM GA₃ or without GA₃.

DISCUSSION

Three experiments were sequentially conducted to induce callus formation and somatic embryogenesis on leaf explants of *A. paniculata*. Callusing primarily depends on the external supply of the phytohormones in the basal media. In the present investigation, the combinations of the hormone supplements (2,4-D and BA) to MS basal medium produced calli. However, 2,4-D alone produced inadequate callus and adequately high callus with the incorporation of BA (Tab. 2). The *in vitro* calli were of two types: the first one was friable rough embryogenic callus on low dose combination of 0.45 µM 2,4-D and 4.44 µM BA and second was smooth non-embryogenic callus on a high dose of (2.26-4.52 µM) 2,4-D and (6.66 and 8.88 µM) BA (Tab. 3, Fig. 2).

Table 4: Effect of BA doses (B), GA₃ doses (G) and their interaction (B*G) on shoot and root number at 30 days after inoculation. The data are mean of three replicates

<table>
<thead>
<tr>
<th>BA (µM)</th>
<th>Shoot number SE</th>
<th>Root number SE</th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>2.5</td>
<td>5.0</td>
</tr>
<tr>
<td>0</td>
<td>1.00</td>
<td>0.67</td>
<td>0.67</td>
</tr>
<tr>
<td>5.0</td>
<td>0</td>
<td>0</td>
<td>1.33</td>
</tr>
<tr>
<td>10.0</td>
<td>1.33</td>
<td>1.67</td>
<td>3.67</td>
</tr>
<tr>
<td>20.0</td>
<td>0.67</td>
<td>0</td>
<td>2.33</td>
</tr>
</tbody>
</table>

Figure 5. The *in vitro* maturation of somatic embryos of *Andrographis paniculata* on various strengths of hormone free MS medium at 30 days after inoculation. (a) 1.0× MS, (b) 0.75× MS, (c) 0.5× MS and (d) 0.25× MS.

Figure 6. The *in vitro* germination of somatic embryos and recovery of plantlets of *Andrographis paniculata* on MS medium supplemented with 10 µM BA and 5 µM GA₃. (a) Greening/(b) germination at 30 days after inoculation, (c) bulk germination in flask, (d) a single plantlet from bulk germination and (e) 170-180 days old plantlets from somatic embryos used for hardening.
The above findings are inconsonant with those obtained during somatic embryogenesis from leaf base of wheat by Mahalakshmi et al. (2003), who have also reported induction of embryogenic and non-embryogenic calli. They further noted the deleterious effect on regenerative behavior of callus on long exposure to 2,4-D. In our investigation also, the high dose of synthetic auxin (2,4-D) elicits callus on leaf explants, which was less in amount and smooth by appearance. However, incorporation of BA with a low dose of 2,4-D or vice versa produces embryogenic callus.

Production of the in vitro embryogenic and non-embryogenic calli arising from leaf explants may be interpreted in terms of genomic DNA methylation/demethylation dynamics, which occur during plant growth and development, both in vivo and in vitro in different cells/tissues of the same organ/whole organism due to environmental and/or ontogenic signals (Ramchandani et al. 1999). Genomic DNA demethylation in a specific cell population or organ always precedes the beginning of any differentiation program, including somatic embryogenesis (Valledor et al. 2007). Presumably, the highly methylated cells/tissues could have been the progenitor of non-embryogenic callus in the present investigation. The promotion of non-embryogenic callus by 2.26-4.52 μM 2,4-D and 6.66 and 8.88 μM BA further supports the above interpretation as the high doses of both hormones enhance genomic DNA methylation in wheat seedlings Vlasova et al. (1995) and sugarbeet cell lines (Causevic et al. 2005).

Auxin and cytokinin ratios determine the de novo processes of various regenerations, including somatic embryogenesis. It appears that the incorporation of low doses of synthetic auxin (2,4-D) and cytokinin in the present study has induced the cells of leaf explants to produce embryogenic callus by way of generating new methylation patterns and/or promoting demethylation. The higher doses of both plant regulators could have offset the endogenous balance, resulting in smooth non-embryogenic callus indicative of abnormal growth and differentiation. However, the in vitro embryogenic callus of A. paniculata requires a combination of both plant growth regulators, e.g. 2,4-D, NAA and BA (Nor Hasnida2002), 2,4-D/NAA and kinetin/BA (Martin 2004), and 2,4-D and BA (Jha et al. 2012). Of these, Martin (2004) could develop a complete protocol for in vitro somatic embryogenesis. The findings in the present investigation and those of the previous studies indicate the versatility of the species about response to auxins (2,4-D and NAA) and cytokinins (BA and kinetin) as far as the in vitro production of embryogenic callus is concerned.

Transfer of embryogenic callus on a combined low dose of 2,4-D (0.45 μM) and BA (4.44 μM) facilitates conversion into somatic embryos at 30 days after inoculation (Fig. 3), which subsequently obtain maturation on reduced strength (0.50×) of MS medium devoid of hormone (Fig. 4). Exogenous supply of auxin up to the globular stage, i.e. initial 1, 2 or 7 days confers cellular competence for the in vitro somatic embryogenesis (Kamada and Harada, 1979; AmmIrato 1985; Nomura and Komamine 1985). The further development from the globular stage to the transitory heart stage gets inhibited in the presence of auxin, indicating the requirement of new gene products, which are otherwise inhibited by auxin (Halperin and Wetherell 1964; Borkird et al. 1986).

Besides, the de novo differentiation and growth from existing structures such as leaf explants represent system (order) change punctuated by temporarily chaos (disorder), which is marked by the development of mild stress conditions. The stress associated with in vitro induction of somatic embryogenesis may result in an overall stress response expressed as chromatin reorganization. An extended chromatin
reorganization is believed to cause an 'accidental' release of the embryogenic program, the latter normally being repressed by a chromatin-mediated gene silencing mechanism (Feher 2005). However, the ability of in vitro cultures to generate embryos is limited to a group of cells or a discrete zone of embryogenic callus (Quiroz-Figueroa et al. 2006). As for the stress response mechanism, Potters et al. (2007) have explained that stress-induced morphogenic response in plant cells could be summarized inhibition of cell elongation, localized stimulation of cell division and alteration of the cell differentiation status. These general cell responses are the same independently of the type of stress, which not only promotes dedifferentiation but can also induce somatic embryo formation. The reason that the embryogenic callus has been transferred on hormone-free reduced strength of MS medium for differentiation, growth and maturation of somatic embryos in A. paniculata.

In the literature also, the strength reduction of salts in culture medium including the investigated species in the present study or inclusion of retardants (abscisic acid/osmoticum, polyethylene glycol) favours the process of induction and maturation of somatic embryos in different plant species, e.g. Picea glauca (Attree et al. 1991; Kong and Yeung 1995), Manihot esculenta (Groll et al. 2002), A. paniculata (Martin 2004) and Musa spp. (Srinivas et al. 2006). The mature somatic embryos obtained so were germinated on full strength MS medium supplemented with 10 µM BA and 5 µM GA₃ (Tab. 4). Cotyledons initially white in color turned green and underwent germination. These plantlets with dark green leaves grew well and formed roots (Fig. 6e). Varshney et al. (2009) and Martin (2004) have also obtained the germination of somatic embryos on MS medium rich in BA and GA₃ in A. paniculata. Further, the importance of GA₃ in embryo germination has also been demonstrated in Crocus cancellatus (Karamian and Ebrahimzadeh 2001), Bouteloua gracilis (Aguado-Santacruz et al. 2001), Santalum album (Rai and McComb 2002) and Eleutherococcus sessiliflorus (Choi et al. 2002) and Gossypium hirsutum (Kumria et al. 2003).

CONCLUSION

we present a three-step in vitro protocol for somatic embryogenesis in A. paniculata that includes production of embryogenic callus on MS medium supplemented with 2,4-D (0.45 µM) and BA (4.44 µM) for 30 days, followed by maturation of somatic embryos on 0.5× MS hormone-free medium for 30 days and germination of somatic embryos and recovery of plantlets on MS medium supplemented with GA₃ (10 µM) and BA (5 µM) for 30-60 days. Thus, the protocol takes about 120 days for the recovery of plantlets via somatic embryogenesis from leaf explants of A. paniculata.

The authors are grateful to Dr. U. Prakasham, Director, Tropical Forest Research Institute, Jabalpur for providing necessary facilities during the course of the investigation.

REFERENCES

Jha Z, Behar N, Sharma S N, Mannade A, Kumar A and Sharma D K 2012 In vitro morphogenesis of medicinally important Andrographis paniculata Nees through

Martin K P 2004 Plant regeneration protocol of medicinally important *Andrographis paniculata* (Burm.f) Wallich ex Nees via somatic embryogenesis. *In Vitro Cellular & Developmental Biology – Plant** **40** 204-209.

